skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiong, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arbeitman, M (Ed.)
    Abstract High-risk human papillomaviruses (HPVs) 16 and 18 are responsible for more than 70% of cervical cancers and majority of other HPV-associated cancers world-wide. Current treatments for these cancers have limited efficacy, which in turn has resulted in disease recurrence and poor survival rates in advanced disease stages. Hence, there is a significant need for development of novel molecularly-targeted therapeutics. This can only be achieved through improved understanding of disease mechanism. Recently, we developed a Drosophila model of HPV18E6 plus human E3 ubiquitin ligase (hUBE3A) and demonstrated that the E6-induced cellular abnormalities are conserved between humans and flies. Subsequently, we demonstrated that reduced level and activity of IKKβ, a regulator of NF-κB, suppresses the cellular abnormalities induced by E6 oncoprotein and that the interaction of IKKβ and E6 is conserved in human cells. In this study, we performed transcriptomic analysis to identify differentially expressed genes that play a role in IKKβ-mediated suppression of E6-induced defects. Transcriptome analysis identified 215 genes whose expression was altered due to reduced levels of IKKβ. Of these 215 genes, 151 genes showed annotations. These analyses were followed by functional genetic interaction screen using RNAi, overexpression, and mutant fly strains for identified genes. The screen identified several genes including genes involved in Hippo and Toll pathways as well as junctional complexes whose downregulation or upregulation resulted in alterations of E6-induced defects. Subsequently, RT-PCR analysis was performed for validation of altered gene expression level for a few representative genes. Our results indicate an involvement for Hippo and Toll pathways in IKKβ-mediated suppression of E6 + hUBE3A-induced cellular abnormalities. Therefore, this study enhances our understanding of the mechanisms underlying HPV-induced cancer and can potentially lead to identification of novel drug targets for cancers associated with HPV. 
    more » « less